
Logic and Incidence Geometry

February 27, 2013

1 Informal Logic

Logic Rule 0. No unstated assumption may be used in a proof.

2 Theorems and Proofs

If [hypothesis] then [conclusion].

LOGIC RULE 1. The following are the six types of justifications allowed for statements
in proofs:

(1) “By hypothesis ...”
(2) “By axiom ...”
(3) “By theorem ...” (previously proved)
(4) “By definition ...”
(5) “By step ...” a previous step in the argument)
(6) “By rule ... of logic.”

3 Reductio ad Absurtum (RAA)

Reductio ad absurtum is reduction to absurdity.

LOGIC RULE 2. To prove a statement H ⇒ C, assume the negation of the statement
C (RAA hypothesis) and deduce an absurd statement using the hypothesis H if needed in
your deduction.

Example. If l and m are distinct lines and are not parallel, the l and m have a unique
point in common.

Proof. Since l and m are not parallel, they meet in a common point A. To show
the uniqueness, suppose they meet in another point B other than A. Then l and m are
two distinct lines passing through both A and B. This is contradictory to that two points
determine a unique line.

4 Negation

If S is a statement, we denote the negation or contrary of S by ¬S, meaning “not S.”

LOGIC RULE 3. The statement “¬(¬S)” is the same as “S.”

LOGIC RULE 4. The statement “¬(H ⇒ C)” is the same as “H ∧ ¬C.”

LOGIC RULE 5. The statement “¬(S1 ∧ S2)” is the same as “¬S1 ∨ ¬S2.”
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5 Quantifiers

Universal quantifier:

“For any x, ... .”
“For each x, ... .”
“For every x, ... .”
“For all x, ... .”
“Given any x, ... .”

Existential quantifiers:
“For some x, ... .”
“There exists an x, ... .”
“There is an x, ... .”
“There are x, ... .”
“There exists a unique x, ... .”

LOGIC RULE 6. The statement “¬(∀x S(x))” is the same as “∃x ¬S(x).”

LOGIC RULE 7. The statement “¬(∃x S(x))” is the same as “∀x ¬S(x).”

6 Implication

Rule of detachment or modus ponens:

LOGIC RULE 8. If P ⇒ Q and P are steps in a proof, then Q is a justifiable step.

LOGIC RULE 9. (a) ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R).
(b) (P ∧Q) ⇒ P ; (P ∧Q) ⇒ Q.
(c) “P ⇔ Q” means that “(P ⇒ Q) ∧ (Q ⇒ P ).”

7 Law of Excluded Middle and Proof by Cases

LOGIC RULE 10. For every statement P , “P ∨ ¬P” is a valid step in a proof (law of
excluded middle).

LOGIC RULE 11. Suppose the disjunction of statements S1, . . . , Sn is already a valid
step in a proof. Suppose that proofs of C are carried out from each of the case assumptions
S1, . . . , Sn. Then C can be concluded as a valid step in the proof. That is,

[(S1 ∨ · · · ∨ Sn) ∧ (S1 ⇒ C) ∧ · · · ∧ (Sn ⇒ C)] ⇒ C.

8 Incidence Geometry

Incidence Axiom 1 (IA1). For every pair of points P and Q there exists a unique line l
incident with P and Q.

Incidence Axiom 2 (IA2). For every line l there exist at least two distinct points incident
with l.

Incidence Axiom 3 (IA3). There exist three distinct points A,B,C not simultaneously
incident with a common line l.

Proposition 8.1. If l, m are distinct lines and are not parallel, then l and m meet at a
unique point.
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Proof. The lines l, m must intersect since they are not parallel. Suppose they meet at two
distinct points P,Q. Then there are two lines l, m through points P,Q. This is contradictory
to Incidence Axiom 1. So l and m meet at a unique point.

Proposition 8.2. There exist three distinct lines not through any common point.

Proof. Let A,B,C be three distinct points not collinear. Since any two distinct points

determine a unique line, the three lines
←→
AB,

←→
AC,

←→
BC must be distinct. We claim that the

three lines have no common point. Suppose they have a common point P . We must have

P 6= A. (Otherwise, P = A implies that A lies on the line
←→
BC since P is a common point

of
←→
AB,

←→
AC,

←→
BC. Thus A,B,C are collinear, a contradiction.) Then two lines

←→
AB,

←→
AC pass

through points P,A. This is contradictory to Incidence Axiom 1.

Proposition 8.3. For every line there is at least one point not lying on it.

Proof. Let A,B,C be three distinct points not collinear by Incidence Axiom 3. Suppose
there is a line l which has no point outside l, i.e., l contains every point. Then l contains all
A,B,C. This means that A,B,C are collinear, a contradction.

Proposition 8.4. For every point there is at least one line not passing through it.

Proof. Let l, m, n be three distinct lines not concurrent by Proposition 8.2. Given an arbi-
trary point P ; then one of l, m, n does not pass through P .

Proposition 8.5. For every point P there exist at least two lines through P .

Proof. Let A,B,C be three points not collinear. If P is outside the line
←→
AB, then the

lines
←→
AP,

←→
BP pass through point P and must be distinct. Otherwise,

←→
AP=

←→
BP implies that

A,B, P are collinear; so P is on the line
←→
AB, contradicting to that P is outside

←→
AB. If P is

on the line
←→
AB, then

←→
AB,

←→
CP are two distinct lines passing through P .

9 Models

We may use dots and dashes to to represent points and lines so that the axioms appear to be
correct statements. We view these dots and dashes as a model for the incidence geometry.

Example 1. Consider a set {A,B,C} of three letters, which are called “points.” The
“lines” are those subsets consisting of two letters, i.e., {A,B}, {A,C}, {B, C}. A “point” is
interpreted as “incident” with a “line” if it is a member of that subset. For instance, point A
is lies on lines {A,B} and {A,C}. Every two distinct lines meet at a unique point (referred
to elliptic parallel property). There are no parallel lines. It is impossible in incidence
geometry to prove that parallel lines exist.

Example 2. Let S2 denote a sphere. Consider each member of S2 as a “point” and each
great circle of S2 as a “line.” Then there are no parallel lines. However, the “points” and
“lines” do not form an incidence geometry, since Axiom 1 is not satisfied.

Example 3 (The smallest affine plane). Consider a set {A,B,C,D} of four letters,
called “points.” The “lines” are those subsets consisting of two letters. Then {A,D} and
{B, C} are parallel lines. The elliptic parallel property cannot be proved. (It is impossible
in incidence geometry to prove that parallel lines do not exist.) For the line
{A,B} and the point C outside {A,B}, there is a unique line {C, D} passing through C
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and parallel to {A,B}. The incidence geometry satisfies the Euclidean parallel property. So
the four points and six lines form an affine plane.

Example 4. Consider a set {A,B,C,D,E} of five letters, called “points.” The “lines”
are those subsets consisting of two letters. There are exactly 10 lines. Let “incidence” be set
membership. The elliptic parallel property is not satisfied. For the line {A,B} and the point
C, there are two lines {C, D}, {C, E} passing through C and parallel to the line {A,B}.
Definition 1 (Independence). A statement is said to be independent if it is impossible to
be either proved or disproved.

Definition 2 (Completeness). An axiom system is said to be complete it there is no
independent statement in the language of the system, i.e., every statement in the language
of the system can be either proved or disproved from the axioms.

The axioms of incidence geometry is not complete. The axioms of Euclidean and hyper-
bolic geometries are complete (see Tarski’s article in Henkin, Suppes, and Tarski, 1959).

10 Isomorphism of Models

Two models of incidence geometry are said to be isomorphic if there is a one-to-one corre-
spondence P ↔ P ′ between the points of the models and a one-to-one correspondence ` ↔ `′

between the lines of the models such that P lies on ` if and only if P ′ lies on `′. Such a
correspondence is called an isomorphism from one model onto the other.

Example 5. Consider a set {a, b, c} of three letters, which we will call “lines” now. The
“points” will be those subsets that contain exactly two letters — {a, b}, {a, c} and {b, c}.
Let “incidence” be the set membership. For instance, “point” {a, b} is on the “lines” a and
b, but not on the “line” c. This model seems to be structurally the same as the three-point
model in Example 1, except the change of notations. An explicit isomorphism is given as
follows:

A ↔ {a, b}, B ↔ {b, c}, C ↔ {a, c},
{A,B} ↔ b, {B, C} ↔ c, {A,C} ↔ a.

For instance, the point A lies on the two lines {A,B} and {A,C} only; its corresponding
point {a, b} lies on the corresponding two lines b and a only. The line {A,B} is incident with
the two points A and B only; the corresponding line b is incident with the corresponding
two points {a, b} and {b, c} only.

The point B ∈ {A,B}, B ∈ {B, C} correspond to {b, c} 3 b, {b, c} 3 c. The point C ∈
{A,C}, C ∈ {B, C} correspond to {a, c} 3 a, {a, c} 3 c. So the bijection is an isomorphism.
However, the following one-to-one correspondence

A ↔ {a, b}, B ↔ {b, c}, C ↔ {a, c},
{A,B} ↔ a, {B, C} ↔ b, {A,C} ↔ c.

is not an isomorphism, since the point A lies in the line {A,C}, but the corresponding point
{a, b} does not lie on the corresponding line c.

Points: chair, table, board. Lines: Classroom, Canteen, Hall. Incidence Relation:
chair ∼ Classroom, table ∼ Classroom, chair ∼ Canteen, board ∼ Canteen, table ∼
Hall, board ∼ Hall. Then the points and lines and the incidence relation form an incidence
geometry. This incidence geometry is isomorphic to the incidence geometry in Example 1.
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11 Affine and Projective Planes

Definition of Affine Plane. A model of incidence geometry having the Euclidean parallel
property.

Definition of Projective Plane. A model of incidence geometry satisfying the Elliptic
parallel property (any two lines meet) and that every line has at least three points.

Example 6 (The smallest projective plane). Consider the set of seven points A, B,
C, D, E, F , G, and the set of seven lines lines {A,B, F}, {A,C,E}, {A,D, G}, {B, C, D},
{B, E, G}, {C, F,G}, {D,E, F}. Then the seven points and the seven lines form a projective
plane which can be demonstrated by Figure 1.

B

E CA

F G
D

Figure 1: Smallest projective plane

Model of Projective Plane. Let A be an affine plane. We introduce an equivalence
relation ∼ on the lines of A :

l ∼ m if either “l = m” or “l‖m.”

(Indeed, ∼ is obviously reflexive and symmetric. Assume l ∼ m and m ∼ n. Suppose l 6∼ n.
Then l, m, n are distinct, l‖m, n‖m, and l, n meet at a point P . Then there two distinct
lines l, n parallel to m and through P . This is contradictory to Euclidean parallel property.
So we must have l ∼ n. Thus ∼ is transitive.) We denote by [l] the set of all lines parallel to
a line l, called the equivalence class of l. Each equivalence class of parallel lines is called
a point at infinity.

We now enlarge the model A to a new model A ∗ by adding these points at infinity; the
points of A are called ordinary points of A∗ for emphasis. We further enlarge the incidence
relation by specifying that each point at infinity (an equivalence class of parallel lines) lies
on every line in that equivalence class: [l] lies on l and on every line m such that l‖m. We
add one new line l∞, the line at infinity, consisting of all points at infinity in A ∗. The
line l∞ is incident with every its point. Then A ∗ becomes a projective plane, called the
projective completion of A .

Verification of IA1. Let P and Q be two distinct points of A ∗. If P,Q are both
ordinary points, they lie on a unique line l in A . Clearly, the line l∞ does not pass through
either of P,Q. So l is the unique line in A ∗ incident with both P,Q.

If one of them is a point at infinity, say, P is a point at infinity [l] and Q is an ordinary
point, then either Q is on l or Q is not on l. In the formal case, we have P,Q incident with
l. The line l∞ does not pass through both P,Q. If m is a line in A through both P,Q, then
m ∈ [l] = P , i.e., l‖m and Q is on m; it forces l = m. In the latter case, since Q is not on l,
there exists a unique line m through Q and parallel to l. Then [m] = [l] = P . Thus l is the
unique line in A ∗ passing through both P,Q.

If both P,Q are two distinct points at infinity, then the line l∞ is the unique line passing
through P,Q.
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Verification of IA2. Each line l in A already has two points of A on m. Adding
the point [l] at infinity, the line l has at least three points in A ∗. Let A,B,C be distinct

points not collinear by IA3. Then no two of the three lines
←→
AB,

←→
AC,

←→
BC are parallel. Then

[
←→
AB], [

←→
AC], [

←→
BC] are three points on l∞.

Verification of IA3. It already hold in A .
Verification of Elliptic Parallel Property. For ordinary two distinct lines l, m in A ,

if they do not meet in A , i.e., they are parallel in A , then they meet at the point [l] (= [m])
in A ∗. For an ordinary line l in A and l∞, they meet at the point [l] in A ∗.

Example 7 (A model of real projective plane). Let S be a sphere centered at the
origin O of our 3-dimension Euclidean space, and T the tangent plane of S at the north
pole N . Put a candle at O, then the upper (open) hemisphere is projected to the tangent
plane T in one-to-one correspondence. Each line in T is the image of a great arc in the
upper open hemisphere. We introduce points at infinity on T by considering the upper
closed hemisphere, where each pair of antipodal points on the equator are identified to one
point. The points and great arcs in the closed upper hemisphere with the identification form
a model of real projective plane. Each point [l] at infinity (consisting of all lines m parallel
to l) can be represent by an identification of two antipodal points of the closed great arcs
corresponding to l. The the points and lines (=great arcs in the upper hemisphere with
antipodal points identified) become a model of real projective plane.

Example 8 (Another model of real projective plane). Let R3 be the vector space of all
tuples (x, y, z), where x, y, z ∈ R. Define an equivalence relation ∼ on the set R3r{(0, 0, 0)}:

(x, y, , z) ∼ (x′, y′, z′) ⇔ (x′, y′, z′) = k(x, y, z) for a nonzero k ∈ R.

Let P denote the set of all “points” [x, y, z], the equivalence classes of elements (x, y, z) in
R3 r {(0, 0, 0)} under ∼. A “line” is a set of all points [x, y, z] such that ux + vy + wz = 0
for a fixed tuple (u, v, w) ∈ R3 r {(0, 0, 0)}, denoted l(u, v, w). A point [x, y, z] is “incident”
with a line l if [x, y, z] is a member of l. Define incidence to be the membership relation.
Then so defined the points, lines, and incidence form a projective geometry.

Analogously, take “points” to be straight lines of R3 through the origin, “lines” to be
the plane of R3 through the origin, and incidence to be the membership relation. Then the
points, lines, and the incidence form a projective geometry.

Verification of IA1: Two distinct points [x, y, z], [x′, y′, z′] determine a unique line l(u, v, w),
where (u, v, w) := (x, y, z)× (x′, y′, z′).

Verification of IA2: Trivial that each lines contains at least three points.
Verification of IA3: Trivial.
Verification of Elliptic Parallel Property: The intersection of every two distinct 2-dimensional

subspaces is a 1-dimensional subspace. So every two distinct lines meet at a point.

Dual Projective Plane. Let G be a projective plane. Let G ′ denote a geometry whose
set of points is the set of lines in G , and whose set of lines is the set of points in G . The
incidence relation in G ′ is the same incidence relation in G . Then G ′ is a also a projective
plane, called the dual projective plane of G .

Verification of IA1: This is equivalent to verify that two distinct lines meet at a unique
point in G , which is Proposition 8.1.

Verification of IA2: Need to show that each line in G ′ has at least three points. This is
equivalent to show that through each point in G there are at least three lines. In fact, given
a point P , let l be a line not through P . Let A,B,C be three distinct points on l. Then
←→
AP,

←→
BP,

←→
CP are three distinct lines through P .
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Verification of IA3: This is equivalent to verify that in G there are three distinct lines
not through a common point, which is Proposition 8.2.

Verification of Elliptic Parallel Property: To show that in G ′ any two lines meet at a
unique point, equivalently, any two points in G determines a unique line.

Principle of Duality in Projective Geometry. If there is a theorem about

points P1, P2, . . ., Ps, lines l1, l2, . . ., lt, and their inductions,

then there is a corresponding theorem about

lines m1, m2, . . ., ms, points Q1, Q2, . . ., Qt, and their corresponding inductions.

Theorem 11.1 (Desargues Theorem). Let A,B,C,A′, B′, C ′ be six distinct points in

projective geometry such that the lines
←→
AA′,

←→
BB′,

←→
CC ′ are concurrent. Let lines

←→
AB,

←→
A′B′

meet at P , lines
←→
AC,

←→
A′C ′ meet at Q, and lines

←→
BC,

←→
B′C ′ meet at R. Then P,Q, R are

collinear.

O

A

C’

A’
R

Q
P

C

B

B’

n

l’l

B’

C

C’

B
A’

A

m’ m

n’

Figure 2: Desargues theorem and its dual

Theorem 11.2 (Dual of Desargues Theorem). Let l, m, n, l′,m′, n′ be six distinct lines
in projective geometry such that l ∩ l′,m ∩m′, n ∩ n′ are collinear. Let p be the line through
l ∩m, l′ ∩m′; q the line through l ∩ n, l′ ∩ n′; and r the line through m ∩ n,m′ ∩ n′. Then
p, q, r are concurrent.

Projection. Let P denote the real projective plane. Let P be a point and l a line such that
P 6∈ l. The projection from P to l is the mapping π : P(P)r {P} → l defined by

π(Q) =
←→
PQ ∩l.

Using homogeneous coordinates [x, y, z] to find a formula for the projection. Let P =
[x0, y0, z0] and l be given by ux+vy+wz = 0, where (u, v, w) 6= (0, 0, 0). Let Q = [x1, y1, z1].

If u(x1 − x0) + v(y1 − y0) + w(z1 − z0) 6= 0, then
←→
PQ ∩l is given by

[
(x0, y0, z0)− ux0 + vy0 + wz0

u(x1 − x0) + v(y1 − y0) + w(z1 − z0)
(x1 − x0, y1 − y0, z1 − z0)

]
.

If u(x1−x0)+v(y1−y0)+w(z1−z0) = 0, then
←→
PQ ∩l = [x1−x0, y1−y0, z1−z0]. Combined

two together, we see that
←→
PQ ∩l is given by

[(ux1 + vy1 + wz1)(x0, y0, z0)− (ux0 + vy0 + wz0)(x1, y1, z1)]

This formula is true even when P ∈ l.
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